Integrated Quality Diagnosis Algorithm Method based on Neural Network and Sensitivity Analysis to Input Parameters
نویسندگان
چکیده
In order to find out the key input parameters, which aroused the output quality out of control during the manufacturing process, an integrated quality diagnosis algorithm for input parameters was proposed. The diagnosis method extends the traditional quality control and diagnosis method that only for the output quality of manufacturing process. It can detect the input parameters of the manufacturing process and provide sensitivities of input parameter for adjustment. Firstly, through the establishment of residual error T control chart, the quality failure situation can be detected. Then, the BN-MTY method was applied to explain the reason of quality failure in T control chart and the root output quality characteristic that aroused the process quality anomaly was located. The integrated method of neural network and sensitivity analysis was used to get the weight and threshold value of never cell in the forecasting network. They were applied to calculate the sensitivities of input parameters to the root output quality. Sensitivities represent the importance of the input parameters to the output quality failure. This integrated quality diagnosis method can both diagnose the output quality characteristics and the input parameters.
منابع مشابه
Diagnosis of Breast Cancer using a Combination of Genetic Algorithm and Artificial Neural Network in Medical Infrared Thermal Imaging
Introduction This study is an effort to diagnose breast cancer by processing the quantitative and qualitative information obtained from medical infrared imaging. The medical infrared imaging is free from any harmful radiation and it is one of the best advantages of the proposed method. By analyzing this information, the best diagnostic parameters among the available parameters are selected and ...
متن کاملAnalysis and Diagnosis of Partial Discharge of Power Capacitors Using Extension Neural Network Algorithm and Synchronous Detection Based Chaos Theory
Power capacitors are important equipment of the power systems that are being operated in high voltage levels at high temperatures for long periods. As time goes on, their insulation fracture rate increases, and partial discharge is the most important cause of their fracture. Therefore, fast and accurate methods have great importance to accurately diagnosis the partial discharge. Conventional me...
متن کاملDiagnosis of hyperlipidemia in patients based on an artificial neural network with pso algorithm
One of the most common and most dangerous diseases of blood fats are such as heart disease, diabetes and stroke, heart and brain. It can control the timely diagnosis, treatment and then prevention of complications is become very effective even without using medicine. Heart disease and diabetes file if patients has useful information that can be used to estimate blood fat timely diagnosis. In th...
متن کاملOptimization of Material Removal Rate in Electrical Discharge Machining Alloy on DIN1.2080 with the Neural Network and Genetic Algorithm
Electrical discharge machining process is one of the most Applicable methods in Non-traditional machining for Machining chip in Conduct electricity Piece that reaching to the Pieces that have good quality and high rate of machining chip is very important. Due to the rapid and widespread use of alloy DIN1.2080 in different industry such as Molding, lathe tools, reamer, broaching, cutting guillot...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JNW
دوره 8 شماره
صفحات -
تاریخ انتشار 2013